Avis clients sur Databricks

Filtrer par :

Note moyenne

  • Note globale
    4,5 /5
  • Facilité d'utilisation
    4,6 /5
  • Service client
    4,8 /5

En savoir plus sur Databricks

En savoir plus sur Databricks

11 avis affichés

Rayla V.
Graduate Research Assistant
Enseignement supérieur, 51-200 employés
Temps d'utilisation du produit: plus d'un an
  • Note globale
    5 /5
  • Facilité d'utilisation
    4 /5
  • Fonctionnalités
    4 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    8/10
  • Source de l'avis 
  • Publié le 01/09/2019

"Powerful tool for dev ops of machine learning models"

Commentaires: Overall, my experience with Databricks has been very positive. It is a powerful tool to enable data scientists without a lot of data engineering skills. However, you need to be a data scientist or machine learning engineer to be able to take advantage of its power for machine learning.

Avantages: I love how easy it is to deploy auto-scaling machine learning models. After a machine learning model is trained, you can just click a button to deploy the model, I believe in a container, and have it auto scale as needed. You can also specify the minimum and maximum size of the deployment to reduce costs but to keep up with the workload as necessary. It is also built around Spark, so tasks involving "big data" aren't an issue.

Inconvénients: Some of the cons are that the primary language is Java/Scala, whereas many data scientists are using python or R, which run slower on Databricks than Java and Scala. Also, the main interface via coding, which can limit a lot of citizen data scientists.

  • Source de l'avis 
  • Publié le 01/09/2019
Utilisateur vérifié
Business Analyst
Services financiers, 1 001-5 000 employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    5 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    5 /5
  • Support client
    4 /5
  • Rapport qualité-prix
    4 /5
  • Probabilité de recommander le produit
    9/10
  • Source de l'avis 
  • Publié le 22/11/2019

"An unified platform to develop high quality analysis"

Commentaires: Databricks is allowing data analysis that other systems could not perform at the same performance because it is a platform that integrates huge amounts of cloud data with Scala, Python, SQL or R notebooks in a user-friendly interface. Due to the features of Databricks, daily work seems more efficient and less bureaucratic.

Avantages: What I like most about Databricks is the amount of integrations the platform provides to the user. With Databricks, you can create datasets, develop machine learning models, and analyze performance automatically by setting up a job periodically. Whether the user is an engineer, data scientist, or business analyst, Databricks can streamline everyone's work.

Inconvénients: What I least like about Databricks is the instability that usually occurs when there are too many users trying to run their notebooks on the same cluster at the same time.

  • Source de l'avis 
  • Publié le 22/11/2019
Mallikarjuna D.
Lead consultant
Services et technologies de l'information, 10 000+ employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    5 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    5 /5
  • Support client
    5 /5
  • Rapport qualité-prix
    5 /5
  • Probabilité de recommander le produit
    4/10
  • Source de l'avis 
  • Publié le 25/02/2021

"Review on databricks"

Commentaires: I would strongly recommend this software for others to use their project needs

Avantages: I’m one of active user using this software day to day needs its pioneer data store layer by holding transactional process stream line it and hold the information by applying business rules .

Inconvénients: It’s pioneer to to hold the source raw traditions as a refined layer to store the data for longer time

  • Source de l'avis 
  • Publié le 25/02/2021
Utilisateur vérifié
Data Scientist
Banque, 1 001-5 000 employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    3 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    4 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    8/10
  • Source de l'avis 
  • Publié le 29/09/2020

"Very good to handle very big data"

Commentaires: While it supports python, when I need to use it, I ultimately prefer to sample or aggregate and export data to work in another environment. For this end, it works very well.

Avantages: - Enables simultaneous collaborative work with colleagues
- Easy to mix spark queries and python for extra analyses and plots
- Handful visualization modes for query results (tables and plots with aggregations)

Inconvénients: - Hard to manage notebook workspace
- Sometimes it gets really slow to run queries
- AFAIK, there aren't visualization options for datasets (without running queries)

  • Source de l'avis 
  • Publié le 29/09/2020
Andrew K.
Senior Program Manager
Services et technologies de l'information, 1 001-5 000 employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    5 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    5 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    8/10
  • Source de l'avis 
  • Publié le 09/03/2021

"Great tool to unlock potential from data science teams"

Commentaires: Overall I find Databricks to be fantastic tool that I almost couldn't live without. Highly recommend it.

Avantages: Databricks allows data science teams to do things that they normally would not be able to do without a much greater level of technical ability. Their mission is "making big data simple" and they definitely deliver on that promise.

Inconvénients: One area where there's still potential to improve further is around making machine learning more accessible. Currently ML still requires a pretty significant degree of data engineering knowledge, but I would love to see Databricks make ML even more accessible.

  • Source de l'avis 
  • Publié le 09/03/2021
Utilisateur vérifié
Principal Consultant
Conseil en gestion, 10 000+ employés
Temps d'utilisation du produit: plus d'un an
  • Note globale
    5 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    5 /5
  • Support client
    5 /5
  • Rapport qualité-prix
    4 /5
  • Probabilité de recommander le produit
    9/10
  • Source de l'avis 
  • Publié le 31/10/2019

"Databricks Review"

Commentaires: Very good. It made analyzing big data a lot easier

Avantages: This product has democratized big data computation. Its very easy to move from any platform to this product as it supports most of the languages.

Inconvénients: Nothing so far- may be cost of computation can improve over time but still an economical product to build in-house big data capability.

  • Source de l'avis 
  • Publié le 31/10/2019
Douglas F.
Senior business analyst
Services financiers, 1 001-5 000 employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    5 /5
  • Facilité d'utilisation
    4 /5
  • Fonctionnalités
    5 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    5 /5
  • Probabilité de recommander le produit
    9/10
  • Source de l'avis 
  • Publié le 25/02/2019

"Excellent for data analysis"

Commentaires: Excellent. Very fast and easy to use. Also it is easy to get help in the documentation. No lags, and support a big number of users.

Avantages: The access and manipulation of data. The software is very fast and great to manipulate and treat data. Also it is possible to build models.

Inconvénients: The lack of options of visualization and creation of dashboards.
The creation of dashboards is possible, but is not intuitive.

  • Source de l'avis 
  • Publié le 25/02/2019
Robert G.
DB Architect
Construction, 5 001-10 000 employés
Temps d'utilisation du produit: 1 à 5 mois
  • Note globale
    4 /5
  • Facilité d'utilisation
    4 /5
  • Fonctionnalités
    5 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    9/10
  • Source de l'avis 
  • Publié le 23/07/2019

"Great tool for the toolbox"

Avantages: I'm a SQL person, so being able to run big data analytics in my preferred language was quite nice. Being able to (near) seamlessly swap between Scala, SQL, and python in the same script is quite powerful. If you don't know how to do something easily in one language, do it in another and then swap back. It's pretty performant and querying non-indexed data dumped from the source systems, even if those datasets aren;t quite "big data". I found it to be quicker to dump 100mil rows of staged date from our on-prem server to the data lake and crunch it in Databricks than it was to run in SQL.

Inconvénients: I wasn't involved in the pricing piece, but from what I understand it's fairly expensive. The clusters can be spun up or down as needed, and there's a nice inactivity shutdown feature if you forget to turn off a test cluster, or something. I also had a pretty rough time getting an Azure Gen 2 Data Lake connected, but after finding the not-so-well-documented bug, it wasn't a big deal.

  • Source de l'avis 
  • Publié le 23/07/2019
Dan S.
SA
Jeux d’argent et casinos, 10 000+ employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    4 /5
  • Facilité d'utilisation
    4 /5
  • Fonctionnalités
    4 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    8/10
  • Source de l'avis 
  • Publié le 30/09/2019

"Databricks Review"

Commentaires: Databricks was chosen as part of a new cloud based data platform. Engagement from the company could be better, however the product itself does the job

Avantages: Easy to use user interface
Can be widely shared across an enterprise with various teams
Apache Spark Cluster part of product

Inconvénients: Information Security considerations have to be taken into account due to need for integrations with databricks VPCs when hosted in AWS

  • Source de l'avis 
  • Publié le 30/09/2019
Rita R.
ux designer
Logiciels, 51-200 employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    3 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    4 /5
  • Support client
    Sans note
  • Rapport qualité-prix
    Sans note
  • Probabilité de recommander le produit
    7/10
  • Source de l'avis 
  • Publié le 29/09/2020

"Good python environment"

Commentaires: Mainly, i use databricks to run large queries, otherwise, I export the data

Avantages: In databricks is easy to transfer the result of a spark query to the python environment, and it has several plots with automatic aggregations

Inconvénients: Databricks has a bad file management system and it is slow sometimes. In addition there are no ways to make a visual query, without using code.

  • Source de l'avis 
  • Publié le 29/09/2020
Balashowry preetam S.
data scientist
Services d'information, 10 000+ employés
Temps d'utilisation du produit: 6 à 12 mois
  • Note globale
    5 /5
  • Facilité d'utilisation
    5 /5
  • Fonctionnalités
    5 /5
  • Support client
    5 /5
  • Rapport qualité-prix
    4 /5
  • Probabilité de recommander le produit
    9/10
  • Source de l'avis 
  • Publié le 01/02/2019

"Good portal for data science related work"

Avantages: I like the portal page, which connects all Azure subscriptions.

Inconvénients: It can be difficult to understand, and not much tutorial is available.

  • Source de l'avis 
  • Publié le 01/02/2019